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Reentrant miscibility in fluids with spherical interactions
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We have obtained the closed-loop fluid-fluid immiscibility in the phase diagram of a binary mixture with
interactions with spherical symmetry. That topology appears when a short-range attractive interaction is con-
sidered between unlike pair molecules. We present ‘‘exact’’ results obtained from Monte Carlo simulation on
different ensembles and results from the application of a first-order perturbation theory.
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A large number of binary fluid mixtures show immiscibi
ity as they are cooled below an upper critical solution te
perature~UCST!. Less common is the reappearance of f
miscibility at a lower critical solution temperature~LCST!.
This type of behavior has been observed in solutions of
ganic compounds in water or alcohols@1#, and between them
nicotine1water mixtures are a textbook example@2#.

After some controversial discussions about the qualita
origin of such a phenomenology, Barker and Fock@3#
showed the first calculations on a closed-loop phase diag
using a lattice description of mixtures with strong orien
tional interactions. The model was designed according t
suggestion by Hirschfelderet al. @4#, who attributed the ori-
gin of reentrant miscibility to the freezing of the orientation
entropy and the strong attraction due to hydrogen bond
which links molecules for a few orientations. In recent yea
many attempts have been made to reproduce the closed
shapes of actual mixtures by improving the lattice picture
the fluid @5,6#. The first successful continuum approach
predicting the closed-loop liquid immiscibility came from a
application of Wertheim’s theory to symmetric hard sphe
~HS! mixtures with mean-field~MF! interactions between
like molecules plus a single square-well bonding site
molecule, which leads to the formation of dimers betwe
unlike components for some molecular orientations@7#.

The realm of the hydrogen bonding as the origin of t
closed-loop phase diagrams arose from the failure of so
earlier studies, which considered spherical interactions@8,9#,
to obtain reentrant miscibility. A contributing factor in tha
situation was the observation that the van der Waals~VDW!
equation of state~EOS!, combined with VDW mixing rules,
can predict qualitatively almost all known phase diagr
types of fluid-fluid equilibria@10#; only one type, the so-
called class VI, involving a closed-loop immiscibility at low
temperatures, cannot be predicted with the VDW approa
Recently, Lopes@11# has shown by computer simulation th
diagrams of class VI can be found for isotropic one-cen
interaction potentials when the range of unlike interaction
shorter than the pure components diameter.

In this Brief Report, we revise the microscopic origin
the reentrant miscibility in fluids by considering an of
lattice model of a binary mixture with isotropic pair intera
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tions. The pair potentialui j (r ), between molecules of specie
i and j is given by the square-well~SW! model:

ui j ~r !5` ~r ,s i j !

2e i j ~s i j <r ,s i j l i j !

0 ~r .s i j l i j !, ~1!

wherer is the distance between the centers of the particl
Models with a small number of parameters are usua

better managed. This is the case of SW symmetrical m
tures, wheres115s225s, e115e225e, and l115l225l.
By tuning the potential parameters of the interactions
tween unlike particles (s12,e12,l12), many features of the
phase behavior of real systems can be observed@12–14#.

In this work, the fluid phase equilibria of SW symmetric
mixtures with s125s, l12Þl, and e12Þe are considered
by Monte Carlo~MC! simulation and the application of th
Barker and Henderson theory@15,16#.

In binary mixtures, fluid phase separation can occ
through two different mechanisms. Attractive interactio
between particles can induce the condensation of a vapo
produce a liquid phase of higher density. On the other ha
unfavorable interactions between unlike particles can ind
a demixing separation, where phases essentially differ
composition@17#. The combination of these two effects ca
produce very different types of phase diagrams@1#. The use
of a symmetrical model makes it easier to identify the nat
of different phases. The presence of demixing in a cert
equilibrium between several phases of these mixtures imp
that two of the phases, I and II, in equilibrium have the sa
density,r, and the mole fractions of a component,i, fulfill
xi

I512xi
II @14,17–19#. These two phases will be labele

‘‘ F ’ ’ in the context of phase diagrams. In addition, demi
ing also implies the equality of the chemical potentials
both components:m15m2.

Simulations were performed using semi-Grand~SG! en-
semble techniques@20,17#, where the thermodynamic cond
tions are defined by the number of particlesN, the tempera-
ture T, the pressurep ~or the volumeV), andm12[m12m2.
Simulations were run either in one box~SG-NpT and SG-
©2001 The American Physical Society01-1
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BRIEF REPORTS PHYSICAL REVIEW E 64 012501
NVT ensembles! usingm1250, or in two boxes~that inter-
change particles and volume! using Gibbs ensemble Mont
Carlo ~GEMC! techniques@21# with total volume fixed.

Simulation runs are organized in cycles. In each cycleN
translations andN identity flips are attempted, one tria
change of volume in SG-NpT and one attempt of volu
interchange, andN attempts of particle interchange in GEM
runs. In ‘‘one-box’’ methods, simulations were perform
usingN5108, 256, 500, and 864 particles. In GEMC run
we usedN5128, 216, and 500, with overall reduced dens
rs350.36.

In order to analyze the fluid demixing, an order parame
F is defined asF52x21. The form of the probability dis-
tribution function ofF for different systems can be mon
tored @18,19# by evaluating the parameterG5(3
2^F4&/^F2&2)/2. For given conditions ofT andp ~or r), the
value ofG depends onN. As N increases,G goes either to 0
~‘‘mixed’’ fluid ! or to 1 ~‘‘demixed’’ fluid !. At critical con-
ditions, G is supposed to converge rapidly withN to a non-
trivial valueGc . The critical lines can be evaluated by inte
polating over pairs of MC data sets with different values oN
to find the conditions whereG is invariant withN. We have
estimated an invariant value ofGc'0.7 in agreement with
Ref. @19#. The composition of demixed phases is evalua
asxi5(16^uFu&)/2.

The analysis of liquid-vapor equilibrium~LVE! at a given
T was performed by means of the estimation ofm using a
test-particle method@22# on a number of SG-NVT simula
tions at different densities. The excess part ofm was fitted to
a polynomial of the density. From the coefficients, we c
readily evaluate the properties of the phases at equilibri
The results were checked by performing GEMC simulatio
The results of both methods agree within experimental er

MC results can be used to test the quality of theoret
approaches. According to the first-order Barker-Hender
perturbation theory~PT! @15#, the Helmholtz free energy pe
particle f of a binary mixture is given as

f ~r,T,x1!

kBT
5

f SW~r,T!

kBT
1

D f

kBT
, ~2!

where kB is the Boltzmann constant,f SW(r,T) is the free
energy per particle of the pure components, andD f is the
free energy of mixing per particle, which depends onT, r,
andx1:

D f

kBT
5

x1~12x1!I ~r!

kBT
1x1 ln x11~12x1!ln~12x1!.

~3!

The first term on the right-hand side corresponds to the
cess free energy of mixing.I (r) is given by

I ~r!5rE dr g0~r;r !@u12~r !2u11~r !#, ~4!

whereg0(r;r ) is the pair distribution function of a HS fluid
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which is evaluated using the empirical correction of t
Percus-Yevick predictions@23#. Note that the density depen
dence ofg0(r;r ) modifies the MF approximation underlyin
the VDW ‘‘a’’ parameter. In fact, such a dependen
coupled with a short-range attractive potential between
like particles can give a nonmonotonic behavior ofI (r),

FIG. 1. TheT-x phase diagram of the symmetric square w
mixture with l51.4, l1251.1, ande12/e51.7 at p* 51.5. Tem-
peratures are given in reduced units:T* 5kBT/e. Dashed line
shows PT results. Circles are MC results for the composition a
function of temperature, diamonds represent the estimated cri
points. For comparison, we show the results for a mixture w
e1250 ~dotted line!.

FIG. 2. T-r projection of the fluid phase diagram from MC an
perturbation theory (m1250). Potential parameters are the same
in Fig. 1. The dashed curve represents the FFE critical line ev
ated using PT. Dotted lines enclose three phase equilibria reg
~evaluated with PT!. Empty circles represent points on the FF
critical line evaluated from MC simulation. Filled circles corre
spond to the compositions of vapor and demixed fluid phase
equilibrium. Error bars are shown when the size of the symbol
exceeded. Solid lines are just joining points.
1-2
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BRIEF REPORTS PHYSICAL REVIEW E 64 012501
which produces the reentrant phenomenology. The ph
equilibria of the mixtures can be evaluated within the
approach using the following recipe.~i! Fix the values of
T, m12, and a set of values ofr. ~ii ! For each value ofr,
find the mole fraction of component 1,x1 (r,T,m12), by
minimizing the functionw(r,T,x1) with respect tox1, where
w(r,T,x1)[ f (r,T,x1)2x1m12. ~iii ! For each density,
evaluatep and m i as functions ofT, r, and x1(r,T,m12).
Discontinuous transitions onr ~for m12 constant! can be ana-
lyzed by looking for loops on thep-r and m i-r plots and
performing Maxwell’s constructions. FF equilibrium appea
whenx (r,T,m1250)Þ 1

2 . The HS contributions to the ther
modynamic properties were evaluated using the Carna
Starling EOS@16#.

In Fig. 1, we show aT-x phase diagram at reduced pre
sure p* 5ps3/e51.5 and m1250 for a mixture with l
51.4, l1251.1, ande12/e51.7, which shows the FF reen
trant phase loop. The PT predictions show a larger immi
bility range. In addition, FF equilibrium in PT vanishes
low temperature through a first-order transition to a mix
liquid. In the same plot, we include PT results for a mixtu
without attractions between unlike particles (e12/e50),
where phase separation persists at low temperatures.

In Fig. 2, we show theT-r phase diagram form1250,
given by MC calculations and PT. In Fig. 3, we show t
p-T projection of the phase diagram obtained from PT. T
agreement between simulation results and theory is o
qualitative. At highT andp, both types of predictions show
FF equilibria. The critical line of FFE,lFF, ends in the lower
pressure region at the end of the line of triple points~FFV
equilibrium!. In PT results, this point is on the critical line o
LVE defined over different values ofm12. We have therefore
a tricritical point~TCP!. MC results seem also to indicate th

FIG. 3. p-T projection of the theoretical results on the sam
system shown in Fig. 2. Dashed line represents FFE critical lin
Dotted lines correspond to equilibrium between two demix
phases~FF! and a mixed fluid of either low density~V! or high
density ~L!. Circles mark the position of tricritical points. In th
inset, where pressure is given in a logarithmic scale, a quadr
point is observed at low pressure.
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existence of a TCP, but the presence of LVE form1250 in a
very small range of temperatures aboveTTCP cannot be dis-
regarded. The results from PT for the other end oflFF show
again some peculiarity; the end point is another TCP wh
lFF meets a triple point line of equilibrium between demix
phases and a mixed fluid of higher density~FFLE!. No evi-
dence of this behavior was found in the range ofT used in
MC simulation. In any case, this high-density TCP is like
to be preempted by the solid. The presence of tricriti
points in a binary mixture is due to the symmetry in t
interactions@1#, and it is strongly dependent on the particul
values of the unlike interaction parameters.

In Fig. 4 we map the range of the dissimilar interactio
~i.e., e12 andl12) where the FF closed-loop behavior can
observed for T* [kBT/e51 and reduced densities,r*
,1.1. It is observed that reentrant phase behavior app
only on a small region in the space of the unlike interact
parameters, in agreement with experimental observat
@24#.

We have observed a closed-loop FF immiscibility in t
phase diagram of a symmetric binary mixture where unl
interactions show a short-range attraction. Reentrant ph
can appear in such fluid mixtures because at high dens
the packing of the molecules enhances the structure of
liquid, and the miscibility of the mixture is recovered by th
action of the attractive forces between unlike molecules. T
VDW EOS cannot show that phenomenology, because
MF attractive parameter, with any selected combination ru
is density-independent.

The authors acknowledge the financial support of
DGICYT/Spain under Grant No. PB98-0673-C02-02, a
the CSC of the Complutense University for the use of th
computing facilities.
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FIG. 4. Mapping of the range of the interactions between d
similar particles that exhibit a closed-loop phase diagram, accord
to the predictions of perturbation theory, atT* 51 ~see the text for
details!. Reentrant behavior appears in the region between the l
of empty and filled circles.
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